本文已被:浏览 21次 下载 27次
投稿时间:2025-05-13 修订日期:2025-06-12
投稿时间:2025-05-13 修订日期:2025-06-12
中文摘要: 目的:针对经典A*算法在井下巷道路径规划中易出现“贴边行走、穿越障碍物角点、路径不平滑”等问题,提出一种更契合井下狭窄、曲折环境的新型改进算法,以提升移动机器人行驶的安全性与路径质量。方法:在传统A*算法基础上,引入对角线防碰撞检测机制,杜绝路径穿越障碍物角点;将巷道宽度因子融入启发函数,引导路径自动偏向通道中心,增强路径的稳定性与可行性;结合路径长度、平均曲率、波动程度与方向变化率等指标,自适应确定B样条曲线的阶数与平滑因子,实现路径平滑处理。通过仿真与实地测试对比,全面评估改进前后的算法性能。结果:改进算法生成的路径能够自动居中,转折自然,较传统方法节点扩展量减少15.58%,计算时间缩短34.37%,路径拐点数量下降40%,显著改善路径贴边、转角尖锐与路径不平滑等问题。意义:该算法在提升路径平滑性与中心偏移能力的同时,有效降低节点扩展冗余和计算开销,可以使机器人在复杂巷道中行驶更加安全可靠。对于井下搬运、巡检和应急救援等任务具有重要应用价值,并为后续智能化系统的部署提供了坚实的算法支持。
Abstract:Purpose: This paper aims to overcome the edge-hugging, corner-cutting, and poor smoothness that the classical A* algorithm exhibits in underground roadway navigation by proposing an enhanced variant tailored to narrow and winding underground roadways, thereby improving mobile-robot safety and path quality. Methods: This paper augments the conventional A* framework with a diagonal collision-avoidance check to eliminate corner cutting. An underground-roadway-width factor is embedded in the heuristic to guide the search toward the centerline, enhancing path stability and feasibility. Furthermore, path length, mean curvature, fluctuation degree, and heading-change rate jointly determine the order and smoothing factor of a B-spline curve for post-processing. Performance before and after the improvement is assessed through comprehensive simulations and field tests. Results: The improved algorithm automatically keeps the path centered and produces smooth turns. Compared with the classical A*, node expansions are reduced by 15.58%, computation time is shortened by 34.37%, and the number of way-point corners decreases by 40%, effectively mitigating edge-hugging, sharp turns, and unsmooth path. Significance: This paper demonstrates that the proposed algorithm markedly improves path smoothness, central alignment, and computational efficiency, enabling safer and more reliable robot traversal in complex underground roadways. The approach offers substantial benefits for underground transport, inspection, and rescue tasks and provides a solid algorithmic foundation for future intelligent-system deployments.
文章编号: 中图分类号: 文献标志码:
基金项目:湖南省重点研发计划项目(2024JK2028),长沙市科技计划项目(kh2205003)
| 作者 | 单位 | |
| 代建龙 | 湖南创远高新机械责任有限公司/中南大学自动化学院 | m15792822612@163.com |
| 柴颖豪 | 湖南科技大学信息与电气工程学院/湖南创远高新机械责任有限公司 | y4835759@gmail.com |
| 陈凌 | 湖南创远高新机械责任有限公司 | LLCL1105@163.com |
| 熊培银* | 湖南科技大学信息与电气工程学院 | xiongpeiyin@126.com |
引用文本:
代建龙,柴颖豪,陈凌,熊培银.基于改进A*算法的井下移动机器人全局路径规划[J].有色金属(矿山部分),2025,77(5):25-36.
Dai Jianlong,Chai Yinghao,Chen Ling,Xiong Peiyin.Global Path Planning of Underground Mobile Robots Based on an Improved A* Algorithm[J].NONFERROUS METALS(Mining Section),2025,77(5):25-36.
代建龙,柴颖豪,陈凌,熊培银.基于改进A*算法的井下移动机器人全局路径规划[J].有色金属(矿山部分),2025,77(5):25-36.
Dai Jianlong,Chai Yinghao,Chen Ling,Xiong Peiyin.Global Path Planning of Underground Mobile Robots Based on an Improved A* Algorithm[J].NONFERROUS METALS(Mining Section),2025,77(5):25-36.

关注微信公众号