###
DOI:
有色金属(矿山部分):2025,77(1):89-97,123
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于Chaos-LSTM深度学习网络的边坡变形预测算法
刘明淳, 许勇, 池永锋, 杨权, 陈智斌
((福建岩土工程勘察研究院有限公司,福州350108))
A Algorithm on Slope Deformation Prediction Based on the Chaos-LSTM Deep Learning Network
LIU Mingchun, XU Yong, CHI Yongfeng, YANG Quan, CHEN Zhibin
((Fujian Geotechnical Engineering Investigation and Research Institute Co., Ltd., Fuzhou 350108, China))
摘要
图/表
参考文献
相似文献
本文已被:浏览 446次   下载 591
投稿时间:2024-08-09    修订日期:2024-10-17
中文摘要: 为实现露天矿边坡变形的精准预测与及时稳定性评价,研究基于边坡变形的时间序列数据,运用了互信息法和相关系数(C-C) 法来确定时间序列重构相空间的最佳嵌入维数和时间延迟。通过对时间序列进行相空间重构,深入分析了边坡变形时间序列中最邻近相点的动态演化规律。在此基础上,结合了长短期记忆人工神经网络(LSTM) 对边坡变形时间序列进行了预测。研究结果显示,在相空间重构的条件下,时间序列中最邻近相点的平均距离增大,意味着边坡变形的混沌特征更为显著,其内在动力系统也更为复杂。LSTM深度学习网络展现出了对边坡变形的短期精确预测能力,预测结果的平均绝度误差不超过2.5mm(监测点L16的预测精度更高,绝对误差保持在1.5mm内), 表现出了较高的预测精度和良好的泛化能力。基于最邻近相点和变形预测结果的分析,可以对边坡的稳定状态进行有效识别。这一研究方法为露天矿开采过程中边坡稳定性评价提供了新的视角,并为矿山安全管理提供了重要的科学依据和技术支撑。
Abstract:To achieve precise prediction and timely stability assessment of slope deformations in opencast mines, this study utilizes time series data of slope deformations, employing the mutual information method and the cross-correlation (C-C) method to determine the optimal embedding dimension and time delay for phase space reconstruction of the time series. Through phase space reconstruction, the dynamic evolution law of the nearest neighbor phase points in the time series of slope deformations is thoroughly analyzed. On this basis, the Long Short-Term Memory (LSTM) artificial neural network is combined to predict the time series of slope deformations. The results indicate that, under the condition of phase space reconstruction, an increase in the average distance between the nearest neighbor phase points signifies more prominent chaotic characteristics of slope deformations and a more complex underlying dynamic system. The LSTM deep learning network demonstrates high accuracy in short-term predictions, effectively predicting slope deformations. Based on the evolution law of the nearest neighbor phase points and the deformation prediction results, the stability state of the slope can be accurately identified, providing new ideas and methods for slope stability assessment during opencast mining.
文章编号:     中图分类号:TD324.1    文献标志码:
基金项目:国家自然科学基金(12005144)
引用文本:
刘明淳,许勇,池永锋,杨权,陈智斌.基于Chaos-LSTM深度学习网络的边坡变形预测算法[J].有色金属(矿山部分),2025,77(1):89-97,123.
LIU Mingchun,XU Yong,CHI Yongfeng,YANG Quan,CHEN Zhibin.A Algorithm on Slope Deformation Prediction Based on the Chaos-LSTM Deep Learning Network[J].NONFERROUS METALS(Mining Section),2025,77(1):89-97,123.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299757

杂志信息

期刊简介

相关下载

联系我们

电话:010-63299757

传真:010-63299754

QQ:XXXXXXX

Email:ysjsks@sina.com;ysjsks@163.com

邮编:100160

地址:北京市南四环西路188号总部基地十八区23号楼

关注微信公众号