本文已被:浏览 524次 下载 863次
投稿时间:2024-02-22 修订日期:2024-03-08
投稿时间:2024-02-22 修订日期:2024-03-08
中文摘要: 为了直观地判断滑坡因素与周期项位移间的因果关系,并提高滑坡位移预测模型的准确性,以某矿山滑坡位移监测数据为例,建立了考虑时滞的CEEMD-CIWOA—BP滑坡位移预测模型。首先利用CEEMD方法将滑坡位移监测数据分解成多个信号分量及res分量,将其重构为滑坡趋势项及周期项位移;然后引入Cubic混沌映射及惯性权重因子对WOA算法优化,利用优化的WOA算法对BP神经网络模型的连接权重及偏置项进行赋值;考虑到降雨及库水位对滑坡位移的时滞效应,利用Granger因果检验法确定降雨及库水位与周期位移的因果关系并引用MIC法确定时滞期数,使用CIWOA-BP模型分别对周期位移进行预测;最后,将各分量结果叠加得到滑坡位移累计预测值,对模型的预测精度进行评价。结果显示,本文提出的CEEMD-CIWOA-BP模型的性能优于其他模型,验证了所建模型的可行性。本文提出的模型能为滑坡灾害预警预报提供一定的参考。
中文关键词: 滑坡位移 互补集合经验模态分解 BP神经网络 改进鲸鱼优化算法 时间序列
Abstract:Landslide displacements are characterized by time lag and nonlinearity, and common correlation analysis methods between landslide factors and cycle term displacements cannot intuitively determine the causal relationship between factors. In this paper, the CEEMD-CIWOA-BP landslide displacement prediction model considering time lag is established by taking the displacement monitoring data of Bazhimen landslide and Baishui River landslide as an example. Firstly, the landslide displacement monitoring data are decomposed into multiple signal components and res components using the CEEMD method, and reconstructed into landslide trend term and period term displacements; then, the Cubic chaotic mapping and inertia weight factor are introduced to optimize the WOA algorithm, and the optimized WOA algorithm is used to assign connection weights and bias terms to the BP neural network model; considering the time-lag effect of rainfall and reservoir level on landslide displacement, a Granger model is developed to predict the landslide displacement using the CEEMD-CIWOA-BP model, and the time-lag effect of rainfall and reservoir level on the landslide displacement is considered. Considering the time lag effect of rainfall and reservoir water level on landslide displacement, Granger causality test is used to determine the causal relationship between rainfall and reservoir water level and cycle displacement and MIC method is used to determine the number of time lag periods, and the cycle displacement is predicted using the CIWOA-BP model; finally, the cumulative predicted values of landslide displacement are obtained by superimposing the results of the various components, and the predictive accuracy of the model is evaluated, and the results show that the performance of the CEEMD-BP-CIWOA model proposed in this paper is very good. The results show that the CEEMD-BP-CIWOA model proposed in this paper outperforms other models, which verifies the feasibility of the proposed model and provides certain reference value for landslide disaster early warning and prediction.
keywords: landslide displacement complementary ensemble empirical mode decomposition BP neural network improved whale optimization algorithm time series
文章编号: 中图分类号: 文献标志码:
基金项目:云南省面上项目(KKS0202121020);云南省大学生创新创业训练计划项目(S202310674105)
作者 | 单位 | |
余国强 | 昆明理工大学 国土资源工程学院 | 15126489286@163.com |
侯克鹏* | 昆明理工大学 国土资源工程学院 | 1153451279@qq.com |
孙华芬 | 昆明理工大学 国土资源工程学院 |
引用文本:
余国强,侯克鹏,孙华芬.滑坡位移CEEMD-CIWOA-BP预测模型[J].有色金属(矿山部分),2025,77(1):106-114,142.
YU Guoqiang,HOU Kepeng,SUN Huafen.Displacement prediction model of landslide based on complementary ensemble empirical mode decomposition and BP-CIWOA[J].NONFERROUS METALS(Mining Section),2025,77(1):106-114,142.
余国强,侯克鹏,孙华芬.滑坡位移CEEMD-CIWOA-BP预测模型[J].有色金属(矿山部分),2025,77(1):106-114,142.
YU Guoqiang,HOU Kepeng,SUN Huafen.Displacement prediction model of landslide based on complementary ensemble empirical mode decomposition and BP-CIWOA[J].NONFERROUS METALS(Mining Section),2025,77(1):106-114,142.