本文已被:浏览 408次 下载 702次
投稿时间:2024-02-01 修订日期:2024-02-06
投稿时间:2024-02-01 修订日期:2024-02-06
中文摘要: 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,本文提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别于KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:以其他模型相比IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.0309、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。
Abstract:The safety factor is one of the important indicators used to evaluate slope stability. The complex slope system leads to uncertainty in the safety factor prediction. Therefore, in order to obtain a more reliable safety factor and at the same time solve the shortcoming that the Pelican Algorithm (POA) easily falls into a local optimum as the number of iterations increases, this paper proposes a multi-strategy Pelican Algorithm (IPOA) and sup-port vectors. The regression model combined with machine (SVR) is used to predict the slope safety factor. First, the original Pelican algorithm was improved by integrating multiple strategies; then the improved Pelican algorithm was combined with the support vector machine to select six influencing factors as input layer indica-tors of the IPOA-SVR model and train the model to obtain IPOA-SVR. SVR slope stability prediction model; finally, compare with KNN, RF and Adaboost models, and calculate the mean square error (MSE) of each model on the training set and test set to verify the superiority of the IPOA-SVR model . The experimental re-sults show that compared with other models, the IPOA-SVR model has better optimization performance. The mean square error on the test set is 0.0309 and the correlation coefficient is 0.91. This illustrates the effective-ness of the strategy used in this article for the POA algorithm. The IPOA-SVR model can Provide a solid tech-nical foundation for the prediction of slope instability disasters.
keywords: safety factor The Pelican Algorithm Support Vector Regression slope stability prediction Mean Square Error
文章编号: 中图分类号:TU457; X947 文献标志码:
基金项目:云南省重点研发计划资助项目(202003AC100002);昆明理工大学引进人才科研启动基金资助项目(KKSY201721032)
作者 | 单位 | |
张佳琳 | 昆明理工大学 国土资源工程学院 | JH_Vic@163.com |
王孝东* | 昆明理工大学 国土资源工程学院 | angiaoongwxd@163.com |
吴雅菡 | 广东省科学院资源利用与稀土开发研究所 | |
水 宽 | 昆明理工大学 国土资源工程学院 | |
张 玉 | 昆明理工大学 公共安全与应急管理学院 | |
程玥淞 | 昆明理工大学 国土资源工程学院 | |
杜青文 | 昆明理工大学 公共安全与应急管理学院 |
引用文本:
张佳琳,王孝东,吴雅菡,水 宽,张 玉,程玥淞,杜青文.基于IPOA-SVR模型的边坡安全系数预测[J].有色金属(矿山部分),2025,77(1):115-123.
ZHANG Jialin,WANG Xiaodong,WU Yahan,SHUI Kuan,ZHANG Yu,CHENG Yuesong,DU Qingwen.Prediction of slope safety factor based on IPOA-SVR model[J].NONFERROUS METALS(Mining Section),2025,77(1):115-123.
张佳琳,王孝东,吴雅菡,水 宽,张 玉,程玥淞,杜青文.基于IPOA-SVR模型的边坡安全系数预测[J].有色金属(矿山部分),2025,77(1):115-123.
ZHANG Jialin,WANG Xiaodong,WU Yahan,SHUI Kuan,ZHANG Yu,CHENG Yuesong,DU Qingwen.Prediction of slope safety factor based on IPOA-SVR model[J].NONFERROUS METALS(Mining Section),2025,77(1):115-123.