###
DOI:
有色金属(矿山部分):2025,77(1):115-123
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于IPOA-SVR模型的边坡安全系数预测
张佳琳1,王孝东1,吴雅菡2,3,4,水 宽 1,张 玉5,程玥淞1,杜青文5
((1. 昆明理工大学 国土资源工程学院,昆明 650093; 2. 广东省科学院资源利用与稀土开发研究所, 广州 510651;3. 稀有金属分离与综合利用国家重点实验室, 广州 510651;4. 广东省矿产资源开发与综合利用重点实验室, 广州 510651;5. 昆明理工大学 公共安全与应急管理学院,昆明 650093))
Prediction of slope safety factor based on IPOA-SVR model
ZHANG Jialin1, WANG Xiaodong1, WU Yahan2, 3, 4, SHUI Kuan1, ZHANG Yu5, CHENG Yuesong1, DU Qingwen5
((1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, China; 3. National Key Laboratory of Rare Metal Separation and Comprehensive Utilization, Guangzhou 510651, China; 4. Key Points of Mineral Resources Development and Comprehensive Utilization of Guangdong Province, Guangdong Laboratory, Guangzhou 510651, China; 5. Faculty of Public Safety and Accident Management, Kunming University of Science and Technology, Kunming 650093, China))
摘要
图/表
参考文献
相似文献
本文已被:浏览 408次   下载 702
投稿时间:2024-02-01    修订日期:2024-02-06
中文摘要: 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,本文提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别于KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:以其他模型相比IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.0309、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。
Abstract:The safety factor is one of the important indicators used to evaluate slope stability. The complex slope system leads to uncertainty in the safety factor prediction. Therefore, in order to obtain a more reliable safety factor and at the same time solve the shortcoming that the Pelican Algorithm (POA) easily falls into a local optimum as the number of iterations increases, this paper proposes a multi-strategy Pelican Algorithm (IPOA) and sup-port vectors. The regression model combined with machine (SVR) is used to predict the slope safety factor. First, the original Pelican algorithm was improved by integrating multiple strategies; then the improved Pelican algorithm was combined with the support vector machine to select six influencing factors as input layer indica-tors of the IPOA-SVR model and train the model to obtain IPOA-SVR. SVR slope stability prediction model; finally, compare with KNN, RF and Adaboost models, and calculate the mean square error (MSE) of each model on the training set and test set to verify the superiority of the IPOA-SVR model . The experimental re-sults show that compared with other models, the IPOA-SVR model has better optimization performance. The mean square error on the test set is 0.0309 and the correlation coefficient is 0.91. This illustrates the effective-ness of the strategy used in this article for the POA algorithm. The IPOA-SVR model can Provide a solid tech-nical foundation for the prediction of slope instability disasters.
文章编号:     中图分类号:TU457; X947    文献标志码:
基金项目:云南省重点研发计划资助项目(202003AC100002);昆明理工大学引进人才科研启动基金资助项目(KKSY201721032)
引用文本:
张佳琳,王孝东,吴雅菡,水 宽,张 玉,程玥淞,杜青文.基于IPOA-SVR模型的边坡安全系数预测[J].有色金属(矿山部分),2025,77(1):115-123.
ZHANG Jialin,WANG Xiaodong,WU Yahan,SHUI Kuan,ZHANG Yu,CHENG Yuesong,DU Qingwen.Prediction of slope safety factor based on IPOA-SVR model[J].NONFERROUS METALS(Mining Section),2025,77(1):115-123.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299757

杂志信息

期刊简介

相关下载

联系我们

电话:010-63299757

传真:010-63299754

QQ:XXXXXXX

Email:ysjsks@sina.com;ysjsks@163.com

邮编:100160

地址:北京市南四环西路188号总部基地十八区23号楼

关注微信公众号