###
DOI:
有色金属(矿山部分):2024,76(4):67-73
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于波形特征的矿山微震监测事件分类方法研究
石雅倩1,2,3,4,5,张 达1,2,3,4,5,冀 虎1,2,3,4,5,陶志达6
((1.矿冶科技集团有限公司,北京102628; 2.国家金属矿绿色开采国际联合研究中心,北京102628; 3.中国-南非矿产资源开发利用联合研究中心,北京102628; 4.中国-南非矿产资源可持续开发利用“一带一路”联合实验室,北京102628; 5.金属矿山智能开采技术北京市重点实验室,北京102628; 中国煤炭加工利用协会,北京100013))
Study on classification method of mine microseismic monitoring events based on waveform features
SHI Yaqian 1,2,3,4,5, ZHANG Da 1,2,3,4,5, JI Hu1,2,3,4,5, TAO Zhida6
((1.BGRIMM Technology Group, Beijing 102628, China; 2.National Center for International Joint Research on Green Metal Mining, Beijing 102628, China; 3.China-South Africa Joint Research Center for Mineral Resources Development, Beijing 102628, China; 4. China-South Africa “Belt and Road” Joint Laboratory for Sustainable Development and Utilization of Mineral Resources, Beijing 102628, China; 5. Beijing Key Laboratory of Nonferrous Intelligent Mining Technology, Beijing 102628, China; 6. China Coal Processing & Utilization Association, Beijing 100013, China))
摘要
图/表
参考文献
相似文献
本文已被:浏览 142次   下载 133
投稿时间:2024-01-31    修订日期:2024-03-05
中文摘要: 目的:针对微震监测技术应用中出现的微震爆破信号分类困难、人工分类工作量大、分类准确率低等问题,本文创新性地提出了支持向量机的波形自动分类技术,旨在解决微震监测系统现有应用难题。方法:针对BSN微震监测系统采集的微震信号和人工爆破信号进行了时域和频域的分析,获得了信噪比、P波到时、首次峰值、最大峰值、主频及P波主频等9个波形特征,经过分析对比后挑选了出5个典型特征,最后采用SVM方法对上述典型特征进行训练,建立了微震和爆破信号自动分类模型,并在广西某金属矿山进行了实际现场应用分析。结果:微震准确率为80.28%,爆破准确率为86.36%。结论:本文研究的分类模型的识别和分类方法使分类准确率达到了80%以上,说明成果能够协助矿山人员减少部分波形分类工作,有助于推动全自动矿山微震监测系统发展。意义:本文提供的分类方法研究思路,能够实际解决微震监测系统在现场应用中的难题,且其中的分析方法不仅可在微震处理中应用,还可进一步用于微震分析,对实现矿山微震实时监测服务具有重大意义。
Abstract:Purpose: In response to the difficulties in classifying microseismic blasting signals, heavy manual classification workload, and low classification accuracy in the application of microseismic monitoring technology, this article innovatively proposes the waveform automatic classification technology of support vector machine, aiming to solve the existing application problems of microseismic monitoring systems. Method: This article conducted time-domain and frequency-domain analysis on the microseismic signals and artificial blasting signals collected by the BSN microseismic monitoring system. Nine waveform features, including signal-to-noise ratio, P-wave arrival time, first peak, maximum peak, main frequency, and P-wave main frequency, were obtained. After analysis and comparison, five typical features were selected. Finally, SVM method was used to train the above typical features, and an automatic classification model for microseismic and blasting signals was established. The actual on-site application analysis was conducted in a metal mine in Guangxi. Result: The microseismic accuracy is 80.28%, and the blasting accuracy is 86.36%. Conclusion: The recognition and classification methods of the classification model studied in this article have achieved a classification accuracy of over 80%, indicating that the results can alleviate the labor intension of processing personnel and promote the development of fully automatic mining microseismic monitoring systems. Significance: The classification method research ideas provided in this article can effectively solve the difficulties in on-site application of microseismic monitoring systems, and the analysis methods can not only be applied in microseismic processing, but also further used in microseismic analysis, which is of great significance for achieving real-time monitoring services for mining microseismic.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划青年科学家项目(项目编号:2021YFC2900600)
引用文本:
石雅倩,张 达,冀 虎,陶志达.基于波形特征的矿山微震监测事件分类方法研究[J].有色金属(矿山部分),2024,76(4):67-73.
SHI Yaqian,ZHANG Da,JI Hu,TAO Zhida.Study on classification method of mine microseismic monitoring events based on waveform features[J].NONFERROUS METALS(Mining Section),2024,76(4):67-73.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299757

杂志信息

期刊简介

相关下载

联系我们

电话:010-63299757

传真:010-63299754

QQ:XXXXXXX

Email:ysjsks@sina.com;ysjsks@163.com

邮编:100160

地址:北京市南四环西路188号总部基地十八区23号楼

关注微信公众号