###
DOI:
有色金属(矿山部分):2025,77(1):159-165
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于WOA-SVM模型的边坡安全系数预测
程子鉴, 陈星明, 安英东, 陈帮洪, 李正国, 王文通
((西南科技大学 环境与资源学院,四川 绵阳621010))
Slope safety factor prediction based on WOA-SVM model
CHENG Zijian, CHEN Xingming, AN Yingdong, CHEN Banghong, LI Zhengguo, WANG Wentong
((School of Environment and Resources, Southwest University of Science and Technology, Mianyang Sichuan 621010, China))
摘要
图/表
参考文献
相似文献
本文已被:浏览 445次   下载 981
投稿时间:2023-09-14    修订日期:2023-12-14
中文摘要: 由于边坡失稳对人们的生命财产造成的威胁日益突出,所以对边坡的稳定性进行评价对于边坡灾害防治具有重要意义,而在使用传统的支持向量机模型对边坡安全系数进行估算时,其精度较低、收敛性较差,对边坡安全系数估算的误差也就比较大。所以针对此类问题,本文采用了鲸鱼优化算法来对支持向量机(SVM)模型进行优化,使用WOA来寻找SVM的最佳惩罚系数c和核函数参数g,由此建立WOA-SVM模型,并将优化后的WOA-SVM模型用来对边坡安全系数进行预测,以达到提高估算边坡安全系数准确性的目的。结果显示,WOA-SVM模型的平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)均优于其他模型,说明对边坡安全系数估算的精确度要高于其他模型所估算的边坡安全系数,所以该模型对于边坡稳定性分析有一定的参考价值。
Abstract:Because the threat of slope instability to people''s life and property is increasingly prominent,the evaluation of slope stability is of great significance for slope disaster prevention and control. When the traditional support vector machine model is used to estimate the slope safety factor,its accuracy is low and its convergence is poor,and the error of slope safety factor estimation is relatively large. Therefore,aiming at such problems,this paper adopts the whale optimization algorithm to optimize the support vector machine(SVM)model,and uses WOA to find the optimal penalty coefficient c and kernel function parameter g of SVM,thereby establishing the WOA-SVM model. The optimized WOA-SVM model is used to predict the slope safety factor,so as to achieve the purpose of improving the accuracy of slope safety factor estimation. The results show that the mean absolute error(MAE),root mean square error(RMSE)and mean absolute percentage error(MAPE)of the WOA-SVM model are better than those of other models,indicating that the accuracy of slope safety factor estimation is higher than that of other models. Therefore,this model has certain reference value for slope stability analysis.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
程子鉴,陈星明,安英东,陈帮洪,李正国,王文通.基于WOA-SVM模型的边坡安全系数预测[J].有色金属(矿山部分),2025,77(1):159-165.
CHENG Zijian,CHEN Xingming,AN Yingdong,CHEN Banghong,LI Zhengguo,WANG Wentong.Slope safety factor prediction based on WOA-SVM model[J].NONFERROUS METALS(Mining Section),2025,77(1):159-165.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299757

杂志信息

期刊简介

相关下载

联系我们

电话:010-63299757

传真:010-63299754

QQ:XXXXXXX

Email:ysjsks@sina.com;ysjsks@163.com

邮编:100160

地址:北京市南四环西路188号总部基地十八区23号楼

关注微信公众号