本文已被:浏览 7次 下载 18次
投稿时间:2022-02-26 修订日期:2022-03-21
投稿时间:2022-02-26 修订日期:2022-03-21
中文摘要: 岩爆是矿山生产中棘手的地质灾害,严重威胁人员与设备的安全。为了对岩爆进行合理预测,选取应力系数σθ/σc、脆性系数σc/σt和弹性能量指数Wet作为分级评判指标,主客观组合赋权确定指标间的权重,主观赋权方法为专家打分法,客观赋权方法为熵权法,采用乘法合成法进行组合赋权。通过组合赋权调整权重确定的主观性,建立组合赋权的可拓综合评价岩爆预测模型。将建好的模型应用于工程实例中,预测结果与实际情况一致,是一种可以应用于工程的模型。
Abstract:Rockburst is a difficult geological disaster in mine production, which seriously threatens the safety of personnel and equipment. To reasonably predict rockburst, the stress coefficient σθ/σc brittleness coefficient σc/σt, and the elastic energy index of Wet are selected as grading evaluation indexes. The weights of the indexes are determined by the combination of subjective and objective weights. The subjective weighting method is an expert scoring method, the objective weighting method is an entropy weighting method, the combination weighting method is used to adjust the subjectivity of weight determination through combination weighting, and the extension is comprehensive evaluation rockburst prediction model of combination weighting is established. The established model is applied to the project, and the predicted result is consistent with the actual situation, which is a model that can be applied to the project.
keywords: entropy method combination weighting method matter-element extension classification prediction multiplication synthesis engineering application
文章编号: 中图分类号: 文献标志码:
基金项目:陕西省教育厅服务地方专项计划项目(21JC009)、陕西铁路工程职业技术学院重点科研(KY2020-23 );
作者 | 单位 | |
崔鹏艳 | 陕西铁路工程职业技术学院 | 1449926255@qq.com |
陈玉明 | 昆明理工大学 | 1160384959 @qq.com |
杨宫印 | 陕西铁路工程职业技术学院 | |
王小勇 | 机械工业勘查设计研究院有限公司 |
引用文本:
崔鹏艳,陈玉明,杨宫印,王小勇.基于组合赋权的可拓综合评价岩爆预测模型[J].有色金属(矿山部分),2022,74(4):64-69.
CUI Pengyan,CHEN Yuming,YANG Gongyin,WANG Xiaoyong.Extension comprehensive evaluation rockburst prediction model based on combination weighting[J].NONFERROUS METALS(Mining Section),2022,74(4):64-69.
崔鹏艳,陈玉明,杨宫印,王小勇.基于组合赋权的可拓综合评价岩爆预测模型[J].有色金属(矿山部分),2022,74(4):64-69.
CUI Pengyan,CHEN Yuming,YANG Gongyin,WANG Xiaoyong.Extension comprehensive evaluation rockburst prediction model based on combination weighting[J].NONFERROUS METALS(Mining Section),2022,74(4):64-69.